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Institute of Philosophy
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Abstract. In the article, we introduce a sound and complete deductive system (AGn) which can be
used to reason about persuasion process performed in distributed systems of agents in circumstances
of uncertain and incomplete information. In order to express degrees of beliefs of these agents,
we adopt methods of Logic of Graded Modalities. To representdegrees’ changes resulting from
the persuasion, we apply tools of Algorithmic Logic and Dynamic Logic. As a result, we interpret
arguments as actions which lead to change of grades of agents’ beliefs.

1. Introduction

The aim of the paper is to propose the logic which allows to reason about persuasion process performed
in distributed systems with uncertain and incomplete information. The name of the formalism is Mul-
timodal Logic of Actions and Graded BeliefsAGn. In the article we show thatAGn is sound and
complete.

The body of the article consists of three chapters. In the section “The SystemAGn” we show the
deductive system for reasoning about persuasion. We present the syntax and semantics of its language
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as well as a set of corresponding axioms and inference rules.In the next chapter, we prove soundness
and completeness ofAGn. And finally - in the section “Examples of expressiveness” weshow what
can be expressed in theAGn language with respect to the persuasion process. Still, before we move
to those issues we want to start with (1) giving motivation for our interest in the topic of persuasion,
(2) discussing the adequacy of the logicAGn for investigating the process of convincing and (3) briefly
presenting other approaches to the subject we examine.

1.1. Motivation

First of all, we want to give motivations for introducing thelogic AGn discussing the reasons for which
we are concerned in the persuasion process. Convincing is animportant topic in the research on artificial
as well as human societies. Its significance results in a great deal of interest and a large number of
publications in philosophy, logic or theoretical computerscience (see e.g. [8, 17, 21, 23, 26]).

Once the complex societies (artificial or human) are studied, a researcher encounters the issue of
distributed systems with available data which is incomplete and uncertain. This means that: (i) infor-
mation is distributed among individuals (some data is not known by every agent, but could be collected
from particular entities), (ii) not every data is available(e.g. an access to some sources of information
- like sensors - is unreachable), (iii) data is unreliable (e.g. a sensor can be broken). Clearly, in such
circumstances the conflicts easily arise. From the point of view of the society,resolving the conflict is a
top necessity since disagreements unable agents to cooperate. The persuasion may then be used as a tool
for reaching a consensus and creating common attitude between individuals.

We understandpersuasionas an action initiated by the conflict and aimed to influence beliefs. The
logic AGn allows to reason about the effects that convincing brings about and to evaluate particular
cases of persuasion - what chances for success has the persuader in the specific situation, how strong
and difficult the victory would be, etc. To conclude, we are interested in the persuasion process as in the
powerful tool of the system of agents which allows to resolveconflicts between them.1

1.2. Adequacy of description

The next question becomes: whether the language ofAGn is adequate to describe the persuasion. To
give an answer, we have to know what characteristics constitute this process. Let us discuss it first.

Once we aim to describe the persuasion executed in distributed systems with incomplete and un-
certain information, we must be able to express belief-attitudes in more nuanced way than “yes-or-no”
framework. Imagine a situation on an airplane when a captainhas to decide what maneuver to perform
to avoid a danger. Say that an officer tries to convince the captain they should turn off some engines.
How often will it be the case that the captain is absolutely sure of his decision? In order to represent
such types of persuasion, we assign to beliefs variousdegrees of uncertainty. As a result, we are able
to describe not only “black-and-white” types of convincing(i.e. before:I did not believe the thesisafter:
I do, or the opposite way), but also such types of persuasion thatincrease the grade of certainty in not a
full range (e.g. after the persuasionI do believe the thesis stronger, but not absolutely). Notice that what
we are directly interested in here is not just modeling gradation of beliefs, but ratherchanges of these
degreesthroughout the process of persuasion (cf. [5, 6]).

1We may think about the persuasion as about a tool for resolving conflicts by agents themselves, i.e. without the interference
of a user of the system.
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Secondly, a persuasion can be executed by threeparties of conflict: proponent (a party that proposes
a thesis and defends it with arguments), opponent (a party that opposes a thesis and possibly attacks it
with counterarguments) and audience (a party that evaluates the arguments of both sides and chooses the
winner) [4].

Finally, since we focus on exploring the success in convincing (which ensures the resolution of
the conflict), the persuasion should be understood as a dynamic phenomenon. Clearly the success is
impossible to achieve unless the proponent performs some action - say, show or does something. That
is, if an argument exists only in the persuader’s mind, thereis no chance to influence audience beliefs.
However, once the proponent performs the argument, there isa possibility (although no guarantee) that
he will succeed. Thus, we wantarguments to be actions- the persuader gives an argument in a sense
that he executes some action.

Characteristics Formalism

Object of persuasion graded beliefs graded doxastic logic

Subject of persuasion parties of contention multimodal logic

Tools of persuasion arguments logic of action

Table 1. The nature of persuasion and its formal description.

To adequately describe distinguished characteristics of persuasion, we choose specific formal methods
(see Table 1). Firstly, in order to represent degrees of beliefs we usegraded doxastic systeminspired
by Logic of Graded Modalities of Wiebe van der Hoek and John Jules Meyer [15, 18]. Their formalism
is useful for those applications in which agents have to reason and work on the basis of data laden with
exceptions (that is, when it is necessary to act despite of using unreliable sources of information). It helps
us to capture various grades of belief-attitudes of the agents in conflict. However, we modify their logic
to make it more appropriate for our needs. We change their epistemic approach into the doxastic one,
since persuasion refers to beliefs not knowledge. Furthermore, we introduce additional belief-operator
which allows to express the degrees of agent’s uncertainty in a more direct way.

Secondly, since individuals play different roles in a conflict (of proponent, opponent and audience),
we use methods ofmultimodal logic [18]. Thus, there are so many operators of a given type as many
individuals in a society. For a system ofn individuals, an agent with the numberi (wherei ∈ {1, . . . , n})
has assigned the belief-operator with the numberi. On the semantic level, the model is extended byn

doxastic accessibility relations - one for each agent.

Finally, we interpret arguments in thelogic of actionswhich is inspired by elements of Algorithmic
Logic [19] and Dynamic Logic [14]. Yet we modify their notation so that we can indicate who is a
performer of an action (who is a proponent of persuasion). Moreover, we are able to express who is an
addressee of argument (who is an audience) by pointing out whose beliefs are about to change under
the influence of arguments. On the semantic level, we understand persuasion as an action which adds
or eliminates transitions in an audience’s doxastic accessibility relation (changing thereby audience’s
opinions about the reality). Such a representation enablesus to research the issue of how arguments
influence persuaded agent’s beliefs.
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1.3. Related work

This is not the first paper to consider the change of agent’s cognitive attitudes. We give a brief overview
of the related works here.Dynamic epistemic logicmodels change of agent’s knowledge combining
epistemic modal logic with dynamic modal logic (see e.g. [20, 3, 2, 9]).2 Dynamic doxastic logic
describes change of beliefs by means of doxastic modal logicand dynamic modal logic (e.g. [25, 16]).
In the belief revisionformalism, a set of agent’s beliefs is changed due to expansion, contraction or
revision in light of new (possibly conflicting) evidence (e.g. [1, 13, 24]).BDI-logics are combinations
of logics on the BDI-approach including, but not limited to epistemic, doxastic or dynamic ones (e.g.
[8, 27]).3

Despite relatively much work on providing logic for reasoning about change of agent’s cognitive
attitudes, there are some fundamental differences betweenthose approaches and ours. Thecontribution
of the presented paper is that we do not focus on the change of beliefs (knowledge), but on thechange
of the degreesof beliefs represented in the manner of the Logic of Graded Modalities. The second
difference arises from the fact that the issue of convincingwas not the main interest in these other
formalisms.4 We want our logic not to be applied to reason about change of cognitive attitudes but rather
to reason about persuasion. Indeed, we show that the logic of actions and graded beliefsis a highly
expressive and useful tool for studying the persuasion process undertaken by agents.

2. The SystemAGn

In this paragraph we show a deductive system which we use for the persuasion theory. It is the Multi-
modal Logic of Actions and Graded Beliefs (AGn). The logic we consider is an extension of a proposi-
tional language in which there are propositional variables, program variables, and apart from the usual
propositional connectives there is one program connective. Moreover, we add some modalities for ex-
pressing properties concerning beliefs as well as actions.In order to model degrees of beliefs we use
Logic of Graded Modalities (LGM) [15, 18] while the part concerning arguments is inspired by logics
of programs like Algorithmic Logic (AL) [19] and Dynamic Logic (DL) [14]. We do not use the whole
apparatus offered by DL or AL which are much more rich formalizations than the one we explore. For
our reasons it is sufficient to use only basic elements of these logics.

2.1. Syntax and semantics

Let V0 denote an at most enumerable set ofpropositional variables(also calledpropositions) p, r, s, . . .
andΠ0 an at most enumerable set ofprogram variables(also calledatomic actions) a1, a2, . . . . Propo-
sitional variables represent atomic assertions such as: “the temperature equals 10 degrees”, “the ther-

2The proposals of dynamic epistemic logic were inspired by the public announcement logic of Plaza [22] (with the exception
of the Moore’s proposal [20]). The Plaza’s logic became modified by generalizing dynamic operators for truthful public
announcement to more complex epistemic actions.
3Observe that BDI-approach concentrates rather on representing beliefs, desires and intentions than change of cognitive states
of agents.
4The process of convincing was considered in BDI framework in[8]. However, even though F. Dignum, B. Dunin-Keplicz and
R. Verbrugge talk about actions and beliefs in the context ofpersuasion, it is still other approach than we have in mind. The
key difference is that they understand actions as specific speech acts performed during agents’ dialogue, while we want actions
to be executed arguments.
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mometer is wrongly placed” etc. which can be either true or false. Further, program variables represent
things happening. In our formalism, they express giving arguments - both verbal (like uttering words e.g.
saying “you should move the thermometer”) and nonverbal (like moving the thermometer).

In addition, we assume the boolean connectives:¬ (negation, “not”),∧ (conjunction, “and”),∨
(disjunction, “or”),→ (implication, “if ... then ...”),↔ (equivalence, “if and only if”, “iff”) and one pro-
gram connective:; which is a sequential composition operator. By means of sequential compositions we
composeschemes of programswhich are defined as finite sequences of atomicactions: a1; a2; . . . ; ak.
Intuitively, the programa1; a2 for a1, a2 ∈ Π0 means “Doa1, then doa2”.

The set of well-formed schemes of programsΠ is defined as follows:

• a ∈ Π for anya ∈ Π0,

• if P1, P2 ∈ Π, thenP1;P2 ∈ Π.

There are considered many program connectives in logics of programs, e.g. nondeterministic choices
or iteration operations. However, sequential compositions are sufficient for our needs.

The last components of the language are modalities. We use modalityM for reasoning about beliefs
shared by agents in persuasion and modalities3 and2 for reasoning about actions (arguments) they
perform. The intended interpretation ofMd

i α is that there aremore thand states which are considered
by an agenti and verifyα. Whereas, formulas3(i : P )α and 2(i : P )α say that after execution
of a programP by an agenti a conditionα may or must be true, respectively. This means that if
P = (a1; . . . ; ak) for a1, . . . , ak ∈ Π0 and the formula3(i : P )α is valid thenit is possiblethat after
giving argumentsa1; . . . ; ak, the thesisα holds. On the contrary, if the formula2(i : P )α is valid then
alwaysafter giving argumentsa1; . . . ; ak, the thesisα holds.

Now, we can define the setF of all well-formed expressions ofAGn. A grammar of the language is
written in Backus-Nauer Form (BNF) as follows:

α ::= p|¬α|α ∨ α|Md
i α|3(i : P )α,

wherep is a propositional variable,d is a natural number,P is a program scheme,i is a name of an
agent. For simplicity, for names of agents we apply natural numbers, so we assume thati ∈ {1, . . . , n}
for some naturaln.

Other boolean connectives are defined from¬ and∨ in the standard way. The necessity operator
2 is the modal dual of the possibility operator3 and is defined as2(i : P )α ↔ ¬3(i : P )¬α. We
useBd

i α as an abbreviation for¬Md
i ¬α - at mostd states considered byi refuteα. We use alsoM !diα

whereM !0iα ⇔ B0
i ¬α, M !diα ⇔Md−1

i α ∧ ¬Md
i α, if d > 0. From the definition above, it is clear that

M !di means “exactlyd”. The most important formula that we shall use in reasoning about a persuasion
process isM !d1,d2

i α which is an abbreviation forM !d1

i α ∧M !d2

i true. It should be read as “i believes
α with a degreed1

d2
”. Thereby, by adegree of beliefsof agents we mean the ratio ofd1 to d2, i.e. the

ratio of the number of states which are considered by an agenti and verifyα to the number of all states
which are considered by this agent. It is easy to observe that0 ≤ d1

d2
≤ 1. Intuitively, if an agent believes

a thesisα with a degree 1 then he is absolutely sure thatα holds while if he believesα with a degree 0
then he is absolutely certainα is false.

The semantics of the language is based on the notions ofvaluationand interpretation. A valuation
is a function which assigns a logical value “false” (denotedby 0) or “true” (denoted by1) to every
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propositional variable. An interpretation assigns to every program variable and every agent a binary
relation in a non-empty set of statesS. Every state will be understood to be an abstraction of a concrete
situation on which the behaviour of the program and the valueof any formula depends. Every state carries
information about the valuations of propositional variables. Furthermore, we consider a doxastic function
which assign to every agent a binary relation which will giveinterpretation of the believe operator.

Definition 2.1. Let Agt = {1, 2, . . . , n} be a finite set of names of agents. By a semanticmodel we
mean a Kripke structureM = (S,RB, I, v) where

• S is a non-empty set of states (the universe of the structure),

• RB is a doxastic function,RB : Agt −→ 2S×S , where for everyi ∈ Agt, the relationRB(i) is
serial, transitive and Euclidean,

• I is an interpretation of the program variables,I : Π0 −→ (Agt −→ 2S×S), where for every
a ∈ Π0 andi ∈ Agt, the relationI(a)(i) is serial, andI(Id)(i) = {(s, s) : s ∈ S}, whereId is a
program constant which means identity,

• v is a function which assigns to every state a valuation of propositional variables
v : S −→ {0,1}V0 and for everys ∈ S, v(s)(true) = 1, wheretrue is a propositional con-
stant.

Notice that we assume that for everyi ∈ Agt the relationRB(i) is serial, transitive and Euclidean.
Furthermore, we do not require this relation to be reflexive since we want the operatorM to model beliefs
rather than knowledge of individuals. In standard epistemic logic, it is assumed that an individual cannot
know facts that are not true, so reflexivity is desirable.

FunctionI can be extended in a simple way to define interpretation of anyprogram scheme. Let
IΠ : Π −→ (Agt −→ 2S×S) be a function defined by mutual induction on the structure ofP ∈ Π as
follows:

• IΠ(a)(i) = I(a)(i) for a ∈ Π0 andi ∈ Agt,

• IΠ(P1;P2)(i) = IΠ(P1)(i) ◦ IΠ(P2)(i) = {(s, s′) ∈ S × S : ∃s′′∈S ((s, s′′) ∈ IΠ(P1)(i) and
(s′′, s′) ∈ IΠ(P2)(i))} for P1, P2 ∈ Π andi ∈ Agt.

In other words,(s, s′) ∈ IΠ(P )(i) for P = (a1; . . . ; ak) andi ∈ Agt iff there exists a sequence of
statess0, . . . , sk such that(sj−1, sj) ∈ I(aj)(i) for j = 1, . . . , k. Intuitively, it means that the states′

can be achieved from the states if the agenti performs actionsa1, . . . , ak in order they appear.
Now, we are ready to definesemanticsof formulas ofAGn.

Definition 2.2. For a given structureM = (S,RB, I, v) and a given states ∈ S the boolean value of
the formulaα is denoted byM, s |= α and is defined inductively as follows:

M, s |= p iff v(s)(p) = 1, for p ∈ V0,

M, s |= ¬α iff M, s 6|= α,

M, s |= α ∨ β iff M, s |= α or M, s |= β,

M, s |= Md
i α iff |{s′ ∈ S : (s, s′) ∈ RB(i) andM, s′ |= α}| > d, d ∈ N,

M, s |= 3(i : P )α iff ∃s′∈S ((s, s′) ∈ IΠ(P )(i) and M, s′ |= α).
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We say thatα is true in a modelM at a states if M, s |= α. Formulaα is true in M (M |= α) if
M, s |= α for all s ∈ S, andα is calledvalid (|= α) if M |= α for all M.

2.2. Axiomatization

In this subsection we characterize the semantic consequence operation described above in syntactic terms
and thereby we give a formal deductive system for deducing properties of persuasion process expressible
in the language ofAGn.

Definition 2.3. The systemAGn is defined as follows. It has three inference rules:

R1 α, α→β
β

R2 α
B0

i
α

R3 α
2(i:P )α

It has also the following axioms:

A0 classical propositional tautologies

A1 Md+1
i α→Md

i α

A2 B0
i (α→ β) → (Md

i α→Md
i β)

A3 M !0i (α ∧ β) → ((M !d1

i α ∧M !d2

i β) →M !d1+d2

i (α ∨ β))

A4 Md
i α→ B0

iM
d
i α

A5 M0
i M

d
i α→Md

i α

A6 M0
i (true)

A7 2(i : P )(α→ β) → (2(i : P )α→ 2(i : P )β)

A8 2(i : P )(α ∧ β) ↔ (2(i : P )α ∧ 2(i : P )β)

A9 2(i : P1;P2)α↔ 2(i : P1)(2(i : P2)α)

A10 2(i : P )α→ 3(i : P )α

A11 2(i : P )true

A12 2(i : Id)α↔ α

In all the above schemes of axioms, the symbolsP,P1, P2 denote schemes of programs,d, d1, d2 are
natural numbers,α, β are arbitrary formulas andi is a name of an agent,i ∈ Agt.

The rulesR1 (Modus Ponens),R2 (Necessitation for graded beliefs) and axiomsA0-A4 are equiva-
lents of rules and axioms of Logic of Graded Modalities (LGM)which was introduced in papers by M.
Fattorosi-Barnaba, F. de Caro, and C. Cerrato [7, 11, 12]. Later, its epistemic interpretation was given
by W. van der Hoek and J.-J. Ch. Meyer [15]. The main differences between our approach and the one
proposed by those authors are: first, we have a logic for many agents (not only one as they assume) and
second, we explore a doxastic model rather than the epistemic one (as in Hoek-Meyer version). Thereby
we assume that doxastic accessibility relations are serial, transitive, and Euclidean instead of equivalence
relations. As a consequence the axiomatic system is a bit changed when compared to the original one
of Fattorosi-Barnaba, de Caro and Cerrato as well as when compared to the epistemic version of Hoek-
Meyer. More specifically, we use the logic of de Caro as a basisfor syntactic formulation of the axioms
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and the logic of Hoek-Meyer as a basis for our semantics. However, still their proposals are modified
since we intend to capture the attributes of beliefs insteadof knowledge (or in terms of axiomatic system
- we are interested in the weak-S5n system not in theS5n one). AxiomsA1, A2, A3 correspond to the
axiom K of commonly used (non-graded)S5n or weak-S5n modal system. For more details see [7]. In
the paper of de Caro and the one of van der Hoek and Meyer, syntax of formulas that create their axiom
systems (especially axiomA3) are different but it is easy to verify that both systems are equivalent. Ax-
iomsA4, A5 andA6 correspond to the axioms 5, 4, and D in weak-S5n system, respectively. They hold
in models for which accessibility relation is Euclidean, transitive and serial, respectively.

The ruleR3 (Necessitation for programs) and axiomsA7-A12 find their motivation in the same
fashion as the corresponding rules and axioms in Algorithmic Logic (AL) (cf. [19]) and Dynamic Logic
(DL) (cf. [14]). However, in AL and DL it is not considered whois a performer of a given program.
Therefore, axioms ofAGn are similar but not exactly the same. As we noted, in AL and DL there are far
more program constructions which we do not need in this approach.

We writeAGn ` α if the formulaα is provable in the deductive system. Moreover, we say that a
formulaα is consistentif AGn 6` ¬α, that is, if it is not the case thatAGn ` ¬α. A finite set{φ1, . . . , φk}
of formulas is calledconsistentif its conjunctionφ1∧· · ·∧φk is consistent. An infinite set of formulas is
calledconsistentif every finite subset is consistent. Formulas and sets of formulas are calledinconsistent
if they are not consistent. A setΓ of formulas ismaximally consistentif Γ is consistent andΓ ∪ {ψ} is
inconsistent for any formulaψ 6∈ Γ.

3. Soundness and completeness

In this section we show that the deductive systemAGn is sound and complete, i.e. that all theorems are
valid formulas and all valid formulas are theorems. To provethis fact, we use the well known technique
of the canonical models by Lemmon and Scott for classical modal logics. More precisely, we apply the
Henkin’s method. That is, we define a satisfying model for anymaximally consistent set of formulasΓ
such that its frame is a frame forΓ.

The proof is based on the completeness results for normal logics with graded modalities (NLGM-
s) (see [7, 12, 11]), epistemic logics (see [10]) and dynamiclogics (see [14]). Some definitions and
theorems of this section are quoted from the above works. However, they are modified for the needs of
this paper.

Theorem 3.1. (soundness)
AGn is sound with respect toM.

Using the standard manner, it is easy to show thatM satisfies the axioms of the systemAGn and the
rules of the systemAGn. The rules hold in the sense that, if their premises are valid, then the consequents
are valid as well (c.f. [11, 15, 18, 14]). An inductive proof on the length of derivations then yields that
every provable formula is true. Below we justify that the rule R2 preserves validity and the axioms
A1-A6 are valid formulas. The proof for the ruleR3 and the axiomsA7-A12 is analogous.

R2 Assume that for any modelM and any states of this modelM, s |= α holds and there exist a
modelM′ and a states′ of this model such thatM′, s′ 6|= B0

i α. Then (by definition of the operatorB),
M′, s′ |= M0

i ¬α, i.e. (by the definition of relation|=) there exists a states′′ such that(s′, s′′) ∈ RB(i)
andM′, s′′ |= ¬α, what contradicts the initial assumption.
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A1 Let M be a model ands be a state of this model. Assume thatM, s |= Md+1
i α. Then,

|{s′ ∈ S : (s, s′) ∈ RB(i) andM, s′ |= α}| > d + 1. Hence,|{s′ ∈ S : (s, s′) ∈ RB(i) and
M, s′ |= α}| > d, i.e.M, s |= Md

i α.

A2 Let M be a model ands be a state of this model. Assume thatM, s |= B0
i (α → β). Then,

|{s′ ∈ S : (s, s′) ∈ RB(i) andM, s′ |= ¬(α → β)}| = 0. Therefore, for any states′, if (s, s′) ∈
RB(i) andM, s′ |= α, thenM, s′ |= β. Next, assume thatM, s |= Md

i α, i.e., there are more thand
statess′ such that(s, s′) ∈ RB(i) andM, s′ |= α. Thereby, there are more thand statess′ such that
(s, s′) ∈ RB(i) andM, s′ |= β. Hence,|{s′ ∈ S : (s, s′) ∈ RB(i) andM, s′ |= β}| > d, i.e.
M, s |= Md

i β.

A3 Let M be a model ands be a state of this model. Assume thatM, s |= M !0i (α ∧ β), i.e. there
are no statess′ such that(s, s′) ∈ RB(i) andM, s′ |= α ∧ β. Next assume thatM, s |= M !d1

i α and
M, s |= M !d2

i β. Thus, there are exactlyd1 states which are in relationRB(i) with the states and satisfy
α and there are exactlyd2 states which are in relationRB(i) with the states and satisfyβ. Moreover,
there are no states in relationRB(i) with the states, in which bothα andβ are true. Therefore there are
exactlyd1 + d2 statess′ such that(s, s′) ∈ RB(i) andM, s′ |= α ∨ β, i.e.,M, s |= M !d1+d2

i (α ∨ β).

A4 LetM be a model ands be a state of this model. Assume thatM, s |= Md
i α, i.e. there are more

thend states such that(s, s′) ∈ RB(i) andM, s′ |= α. Let s0 be such a state. SinceRB(i) is Euclidean
s0 is in relationRB(i) with more thand statess′′ such thatM, s′′ |= α. Therefore,M, s0 |= Md

i α.
Thus, for any states′ such that(s, s′) ∈ RB(i) andM, s′ |= α it holds thatM, s′ |= Md

i α, i.e.,
M, s |= B0

iM
d
i α.

A5 Let M be a model ands be a state of this model. Assume thatM, s |= M0
i M

d
i α. Then,

|{s′ ∈ S : (s, s′) ∈ RB(i) andM, s′ |= Md
i α}| > 0. Hence, there exists at least one states′ such that

there are more thand statess′′ such that(s′, s′′) ∈ RB(i) andM, s′′ |= α. Since the relationRB(i)
is transitive there are more thand statess′′ such that(s, s′′) ∈ RB(i) andM, s′′ |= α. Therefore,
M, s |= Md

i α.

A6 Let M be a model ands be a state of this model. Since the relationRB(i) is serial there
exists at least one states′ such that(s, s′) ∈ RB(i). Thus, there exists at least one states′ such that
(s, s′) ∈ RB(i) andM, s′ |= true, i.e.,M, s |= M0

i (true).

Theorem 3.2. (completeness)
AGn is complete with respect toM.

To prove this theorem we have to show that, for allα ∈ F , if |= α, thenAGn ` α or equivalently,
if AGn 6` α, then 6|= α, i.e. if AGn 6` α, then there exists a modelM and a states of this model such
thatM, s |= ¬α. Thus, (by replacingα by ¬α) if AGn 6` ¬α, then there exists a modelM and a
states of this model such thatM, s |= α. Thus, proving completeness is equivalent to showing that
every consistent formula is satisfiable. In order to prove this, it is sufficient to show that every consistent
set of formulas is satisfiable. Since every consistent set offormulas can be extended to a maximally
consistent set, it is sufficient to show that every maximallyconsistent set of formulas is satisfiable. This
is established by means of the construction ofcanonicalKripke structureMc.

Let Φ be the set of all the maximally consistent sets.

Definition 3.1. The functionmi : Φ × Φ → ω + 1 = ω ∪ {ω}, for i ∈ Agt is defined as follows: for
everyΓ,Γ′ ∈ Φ
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• mi(Γ,Γ
′) = ω if for any α ∈ Γ′,Md

i α ∈ Γ for anyd ∈ N,

• mi(Γ,Γ
′) = h =min{d ∈ N : M !diα ∈ Γ andα ∈ Γ′} otherwise.

Definition 3.2. Let Γ0 ∈ Φ. The set

SFi(Γ0) =
⋃

{{Γ} ×mi(Γ0,Γ) : Γ ∈ Φ}

for i ∈ Agt, will be called the satisfying family ofΓ0.

An element ofSFi(Γ0) is of the form〈Γ, d〉 whered < mi(Γ0,Γ). Therefore we shall think of
SFi(Γ0) as it is made up bymi(Γ0,Γ) ordered copies ofΓ, for anyΓ ∈ Φ.

Theorem 3.3. For anyα ∈ F , i ∈ Agt, andd ∈ N,

Md
i α ∈ Γ0 iff |{Γ ∈ SFi(Γ0) : α ∈ Γ}| > d

where, to simplify notations, we identify a couple〈Γ, d〉 (d < m(Γ0,Γ)) with its first component.

For the proof see [7].
Let

m(Γ) = sup{mi(Γ
′,Γ) : Γ′ ∈ Φ and i ∈ Agt}

for anyΓ ∈ Φ.
The canonical Kripke model we define as

Mc = (Sc, RBc, Ic, vc)

with

• Sc =
⋃
{{Γ} ×m(Γ) : Γ ∈ Φ} ∪ Ψ, whereΨ = {〈Γ, ω〉 : Γ ∈ Φ andm(Γ) = 0}. We may think

of Sc as made up bym(Γ) ordered copies ofΓ, if m(Γ) 6= 0, and by one copy ofΓ, if m(Γ) = 0,
for anyΓ ∈ Φ. We shall identify〈Γ, d〉 (d ≤ ω) with sΓ.

• RBc : Agt −→ 2S×S is a function such thatRBc(i) = {(sΓ, sΓ′) ∈ S × S : sΓ′ ∈ SFi(Γ)},

• Ic : Π0 −→ (Agt −→ 2S×S) is a function such thatIc(a)(i) = {(sΓ, sΓ′) : ∀α∈F (if
2(i : a)α ∈ Γ, then α ∈ Γ′)},

• vc : S −→ {0,1}V0 is a function such thatvc(sΓ)(p) = 1 iff p ∈ Γ.

First, we prove by induction on the complexity of program schemeP that Ic
Π : Π −→ (Agt −→

2S×S) is a function such thatIc
Π(P )(i) = {(sΓ, sΓ′) : ∀α∈F (if 2(i : P )α ∈ Γ, then α ∈ Γ′)}. If

P = a ∈ Π0, then the thesis follows from the definition of the canonicalmodel. Suppose thatP = P1;P2

and(sΓ, sΓ′) ∈ Ic
Π(P )(i).

(⇒) Let sΓ, sΓ′ be states such that(sΓ, sΓ′) ∈ Ic
Π(P1;P2)(i). Then, there exists a statesΓ′′ such

that (sΓ, sΓ′′) ∈ Ic
Π(P1)(i) and(sΓ′′ , sΓ′) ∈ Ic

Π(P2)(i). Suppose that2(i : P1;P2)α ∈ Γ. Then, by
axiom A9 and maximal consistency ofΓ, 2(i : P1)2(i : P2)α ∈ Γ. Now, by inductive hypothesis,
2(i : P2)α ∈ Γ′′ andα ∈ Γ′.

(⇐) Claim. Let Γ be a maximally consistent set of formulas. Then, there exists a maximally consis-
tent setΓ′ such thatα ∈ Γ′ for any formulaα such that2(i : P )α ∈ Γ.
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Proof of the Claim. LetΓ(P )(i) = {α : 2(i : P )α ∈ Γ}. Observe thatΓ(P )(i) is a non-empty set
since, by axiom A11,true ∈ Γ(P )(i). We shall prove thatΓ(P )(i) is a consistent set.

SupposeΓ(P )(i) is inconsistent. Then there exists a finite set{φ1, . . . , φk} ⊆ Γ(P )(i) such that
AGn ` ¬(φ1 ∧ · · · ∧ φk). Now, by R3,AGn ` 2(i : P )(¬(φ1 ∧ · · · ∧ φk)) and, by A10,AGn ` 3(i :
P )(¬(φ1 ∧ · · · ∧ φk)), i.e. by the definition of operator2, AGn ` ¬2(i : P )(φ1 ∧ · · · ∧ φk). Thus, by
A8, AGn ` ¬(2(i : P )φ1 ∧ · · · ∧ 2(i : P )φk). As a consequence, the set{2(i : P )φj : j = 1, . . . , k}
is inconsistent. This contradicts the assumption that{2(i : P )φj : j = 1, . . . , k} ⊆ Γ andΓ is a
maximally consistent set. Therefore,Γ(P )(i) is consistent.

Since any consistent set can be extended to a maximally consistent set there exists a maximally
consistent setΓ′ such thatΓ(P )(i) ⊆ Γ′, what ends the proof of the Claim.

Let Γ,Γ′ be maximally consistent sets. Assume that if2(i : P1;P2)α ∈ Γ, thenα ∈ Γ′ for any
α ∈ F . Then, by axiom A9 and maximal consistency ofΓ, 2(i : P1)2(i : P2)α ∈ Γ. Now, by
the Claim, there exists a maximally consistent setΓ′′ such that2(i : P2)α ∈ Γ′′ and, by inductive
hypothesis,(sΓ, sΓ′′) ∈ Ic

Π(P1)(i) and(sΓ′′ , sΓ′) ∈ Ic
Π(P2)(i). Thus,(sΓ, sΓ′) ∈ Ic

Π(P1;P2)(i).

Lemma 3.1. For any maximally consistentΓ, it holds that for anyα,M c, sΓ |= α iff α ∈ Γ.

Proof The proof by induction on the structure ofα.

Case 1α = p ∈ V0. Directly from the definition ofvc.

Case 2α = β1 ∨ β2.

Mc, sΓ |= β1 ∨ β2 iff Mc, sΓ |= β1 or Mc, sΓ |= β2 iff (by the inductive hypothesis)β1 ∈ Γ or
β2 ∈ Γ iff (by maximal consistency ofΓ) β1 ∨ β2 ∈ Γ.

Case 3α = ¬β.

Mc, sΓ |= ¬β iff Mc, sΓ 6|= β iff (by the inductive hypothesis)β 6∈ Γ iff (by maximal consistency
of Γ) ¬β ∈ Γ.

Case 4α = 2(i : P )β.

(⇐) Suppose2(i : P )β ∈ Γ. Then, by definition ofIc
Π, if (sΓ, s

′
Γ) ∈ Ic

Π(P )(i), thenβ ∈ Γ′.
Thus using the inductive hypothesis,Mc, sΓ′ |= β for all Γ′ such that(sΓ, sΓ′) ∈ Ic

Π(P )(i), i.e.
Mc, sΓ |= 2(i : P )β.

(⇒) For the other direction, assumeMc, sΓ |= 2(i : P )β. It is easy to show that the set{φ :
2(i : P )φ ∈ Γ} ∪ {¬β} is inconsistent. From this it follows that there must be somefinite subset,
say{φ1, . . . , φk,¬β}, which is inconsistent. Thus, by propositional reasoning,we have

AGn ` φ1 → (φ2 → (· · · → (φk → β) . . . )).

By R3, we have

AGn ` 2(i : P )(φ1 → (φ2 → (· · · → (φk → β) . . . ))).

By induction onk, together with axiom A7 and propositional reasoning, we canshow

AGn ` 2(i : P )(φ1 → (φ2 → (· · · → (φk → β) . . . )))

→ (2(i : P )φ1 → (2(i : P )φ2 → (· · · → (2(i : P )φk → 2(i : P )β) . . . ))).
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Now from R1, we get

AGn ` 2(i : P )φ1 → (2(i : P )φ2 → (· · · → (2(i : P )φk → 2(i : P )β) . . . )).

Hence (sinceΓ contains all theorems)

2(i : P )φ1 → (2(i : P )φ2 → (· · · → (2(i : P )φk → 2(i : P )β) . . . )) ∈ Γ.

Becauseφ1, . . . , φk ∈ {φ : 2(i : P )φ ∈ Γ}, we must have2(i : P )φ1, . . . ,2(i : P )φk ∈ Γ.
Now, from the maximal consistency ofΓ, it follows that2(i : P )β ∈ Γ.

Case 5α = Md
i β.

Mc, sΓ |= Md
i β iff (by the inductive hypothesis)|{sΓ′ : (sΓ, sΓ′) ∈ RBc(i) andβ ∈ Γ′}| > d

iff (by the definition of the canonical structure)|{sΓ′ : sΓ′ ∈ SFi(Γ) and β ∈ Γ′}| > d iff (by
Theorem 3.3)Md

i β ∈ Γ.

Notice that, Lemma 3.1 impliesMc, sΓ |= Γ, for any maximally consistent setΓ. Thereby, we
showed that every consistent setΓ is satisfiable what ends the completeness proof.

4. Examples of expressiveness

Our research aim is to reason about a persuasion process performed in a multi-agent system. To this
end we need to employ a formal language in which it is possibleto characterize main attributes of this
process. In this section we show thatAGn logic is expressible enough to accomplish this task. Among
the important features of argumentation are: existence of aconflict of opinion, success of persuasion,
power of arguments as well as an influence of a proponent credibility on the effect of an argumentation.

Consider two agents which are committed to make an attempt tocause the rise of the environment’s
temperature as soon as it falls under100C. Assume that one agent is not able to carry out the task on his
own. It is possible only if agents cooperate.

Example 1 (Conflict of opinion) The condition for persuasion to start is a conflict of opinion. In
our scenario a conflict appears when one of the agents believes that the temperature is lower than100C
while the other does not - possibly because agents use different sources of information and thereby
derive different conclusions. Indeed, as long as agents have the same opinion, there is no use to start the
persuasion. Only a conflict might make one of agents try to convince the other to his ideas. Recall that
an agent which gives a thesis and defends it is a proponent while an agent to which the persuasion is
addressed is an audience.5 Interestingly, a conflict appears not only when a proponent is absolutely sure
about the thesis and an audience is absolutely against it. Itcan also arise from the fact that the degrees
of agents’ beliefs differ or belong to different intervals,where by a degree we understand the ratio of the
number of states which the agent considers and at which a thesis is true to the number of all states he
considers as his doxastic alternatives. Say that degrees from (1

2 , 1] mean accepting the thesis and degrees
from [0, 1

2 ] mean rejecting the thesis. Then, the conflict of opinion can be captured in the language of
AGn in the following way:

M !3,4
prop(pt<10) ∧M !1,4

aud(pt<10)

5In our example, the second agent disagrees and is persuaded at the same time. This means that he plays both the role of
opponent and audience. However, for the clarity of the examples we will call him just “the audience”.
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whereprop andaud mean the proponent and the audience, respectively, andpt<10 is a propositional
variable which expresses that the temperature is lower than100C. This formula should be read as follows:
“The proponent believes that the temperature is lower than100C with the degree34 and the audience
believes the temperature is lower than100C with the degree14 ”.

Example 2 (Success of persuasion)The persuasionP = (a1; a2; . . . ; ak) can be successful when
after performing argumentsa1, a2, . . . , ak by the proponent, it is possible that the audience will believe
the thesis with some expected degree. Recall that in our scenario an agent accepts the thesis if he believes
it in a degree higher than12 . Then, thesuccesswill be achieved when:

3(prop : P )(M !3,4
aud(pt<10)).

This formula states “If the proponent performs argumentsP then it is possible that the audience will
believe the thesis with the degree3

4 ”.
Interestingly, success can be alsosubjective. That is, after execution ofP the proponent may believe

that he achieved a goal while he did not. This means that he faulty evaluated the results of his persuasion:

3(prop : P )[M !4,4
prop(M !3,4

aud(pt<10)) ∧ ¬M !3,4
aud(pt<10)].

The formula states “If the proponent performs argumentsP then it is possible he will believe that the
audience is convinced with the degree3

4 , but the audience will not believe the thesis with this degree”.
The other important issue is whether the proponent believes(predicts) that he is able to succeed.

Otherwise, he may not start convincing even though he had allnecessary means to prevail in the desired
degree. Such a situation can be expressed by the formula:

M !0,4
prop[3(prop : P )(M !4,4

aud(pt<10))] ∧ 2(prop : P )(M !4,4
aud(pt<10)).

Here the proponent is absolutely sure that his persuasionP will fail (the proponent believes with the
degree0

4 that the audience may become convinced to the thesis with thedegree4
4 ), but in factP would

lead him to success (after persuasionP the audience will believe the thesis with the desired degree4
4 ).

Example 3 (Power of arguments)The persuasiveness may depend on the quality of arguments.
Assuming the same proponent and the same audience but different arguments, we can obtain results of
unlike strength. Say that if in the scenario the proponent gives verbal argument “One of your thermome-
ters is placed wrongly since it is too close to a heater” (action a), then he will prevail. However, his
success will not be absolute:

M !1,4
aud(pt<10) → 2(prop : a)(M !3,4

aud(pt<10)).

We read this formula as follows “If the audience believes thethesis with the degree14 then always after
the execution of the actiona by the proponent, the audience will believe the thesis with the degree34 ”.

When in the same situation the proponent moves the thermometer to another place (actionb) and
thus proves that the temperature is lower than100C, he may obtain audience’s utter conviction:

M !1,4
aud(pt<10) → 3(prop : b)(M !4,4

aud(pt<10)).

Example 4 (Power of proponent’s credibility) Another important factor which affects the persua-
siveness is a proponent, precisely - who he is. Assume that the audience finds a proponent (call him
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prop1) unreliable. As a consequence, he trusts nothing what the proponent says or acts and therefore
none of his arguments will convince him. On the other hand, ifanother proponent (call himprop2) is
a leader of a group of agents or is a specialist, then his arguments have great persuasive power. Simply
stated, the same arguments can cause different results depending on an agent who performs them:

¬3(prop1 : P )(M !4,4
aud(pt<10)) ∧ 3(prop2 : P )(M !4,4

aud(pt<10)).

5. Conclusions

In the article, we introduce thedeductive systemAGn, i.e., we define its syntax and semantics as well as
provide an elegant axiomatization for the resulting language. We also show thesoundnessandcomplete-
nesstheorems for the logic. Having the outcome of completeness,we can applyAGn for specification
and verification of properties of multi-agent systems in which agents perform the process of convincing.
In particular, the complete logic allows us to employ it inaxiomaticverification. This means that our
logic provides a formal proof of correctness of distributedsystems and creates the possibility of finding
faults. Moreover, we show howexpressiblethe language of our logic is with respect to the persuasion
process. With the help ofAGn, we can reason about the effects which convincing brings about - in what
degree the persuasion changes audience’s beliefs, what tactic should an agent undertake to influence other
agent’s opinion, whether the persuasion was successful, how strong the victory is, whether the success
is real or only subjective, what agent has sufficient persuasive power to convince a given audience, etc.
On the basis ofAGn logic we plan to develop a software systeminvestigating a persuasion process. The
aim of this system will be to study multi-agent systems in which agents can argue and perform actions
to influence each others beliefs.
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