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1.

The aim of the paper is to propose the logic which allows te@aaabout persuasion process performed
in distributed systems with uncertain and incomplete im@tion. The name of the formalism is Mul-
timodal Logic of Actions and Graded BeliefdG,,. In the article we show thatlG,, is sound and

Abstract. In the article, we introduce a sound and complete dedugyistem (4G,,) which can be
used to reason about persuasion process performed ilbdtetlisystems of agents in circumstances
of uncertain and incomplete information. In order to exprdegrees of beliefs of these agents,
we adopt methods of Logic of Graded Modalities. To represegrees’ changes resulting from
the persuasion, we apply tools of Algorithmic Logic and Dyn@Logic. As a result, we interpret
arguments as actions which lead to change of grades of abetiess.

Introduction

complete.

The body of the article consists of three chapters. In thé@etThe SystemAgG,,” we show the
deductive system for reasoning about persuasion. We gréseeyntax and semantics of its language
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as well as a set of corresponding axioms and inference rutethe next chapter, we prove soundness
and completeness odG,,. And finally - in the section “Examples of expressiveness” shew what
can be expressed in théG,, language with respect to the persuasion process. Stilbrdafe move
to those issues we want to start with (1) giving motivation dar interest in the topic of persuasion,
(2) discussing the adequacy of the loglg,, for investigating the process of convincing and (3) briefly
presenting other approaches to the subject we examine.

1.1. Motivation

First of all, we want to give motivations for introducing tlogjic AG,, discussing the reasons for which
we are concerned in the persuasion process. Convincingiiggortant topic in the research on artificial
as well as human societies. Its significance results in at giea of interest and a large number of
publications in philosophy, logic or theoretical compgeience (see e.g. [8, 17, 21, 23, 26]).

Once the complex societies (artificial or human) are stydéeresearcher encounters the issue of
distributed systems with available data which is incongkatd uncertain. This means that: (i) infor-
mation is distributed among individuals (some data is hawkmby every agent, but could be collected
from particular entities), (ii) not every data is availaljdeg. an access to some sources of information
- like sensors - is unreachable), (iii) data is unreliablg.(ex sensor can be broken). Clearly, in such
circumstances the conflicts easily arise. From the pointasf of the societyresolving the conflictis a
top necessity since disagreements unable agents to ctampEhe persuasion may then be used as a tool
for reaching a consensus and creating common attitude betindividuals.

We understangbersuasionas an action initiated by the conflict and aimed to influendetse The
logic AG,, allows to reason about the effects that convincing bringsutland to evaluate particular
cases of persuasion - what chances for success has thedmrsughe specific situation, how strong
and difficult the victory would be, etc. To conclude, we areiasted in the persuasion process as in the
powerful tool of the system of agents which allows to resawgflicts between ther.

1.2. Adequacy of description

The next question becomes: whether the languagd®f is adequate to describe the persuasion. To
give an answer, we have to know what characteristics catestihis process. Let us discuss it first.
Once we aim to describe the persuasion executed in digtdbeystems with incomplete and un-
certain information, we must be able to express beliefeattis in more nuanced way than “yes-or-no”
framework. Imagine a situation on an airplane when a captainto decide what maneuver to perform
to avoid a danger. Say that an officer tries to convince théagaphey should turn off some engines.
How often will it be the case that the captain is absolutelse saf his decision? In order to represent
such types of persuasion, we assign to beliefs varitmggees of uncertainty As a result, we are able
to describe not only “black-and-white” types of convincifi@. before:l did not believe the theskfter:
| do, or the opposite way), but also such types of persuasiorirntbaase the grade of certainty in not a
full range (e.g. after the persuasibdo believe the thesis stronger, but not absolytelNotice that what
we are directly interested in here is not just modeling giiadeof beliefs, but rathechanges of these
degreesthroughout the process of persuasion (cf. [5, 6]).

We may think about the persuasion as about a tool for regplmflicts by agents themselves, i.e. without the interfese
of a user of the system.
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Secondly, a persuasion can be executed by {haettes of conflict: proponent (a party that proposes
a thesis and defends it with arguments), opponent (a paatyotiposes a thesis and possibly attacks it
with counterarguments) and audience (a party that evaltladearguments of both sides and chooses the
winner) [4].

Finally, since we focus on exploring the success in condmpdwhich ensures the resolution of
the conflict), the persuasion should be understood as a dgramenomenon. Clearly the success is
impossible to achieve unless the proponent performs sotimacsay, show or does something. That
is, if an argument exists only in the persuader’s mind, tliereo chance to influence audience beliefs.
However, once the proponent performs the argument, ther@ssibility (although no guarantee) that
he will succeed. Thus, we waatguments to be actions- the persuader gives an argument in a sense
that he executes some action.

Characteristics Formalism
Object of persuasion graded beliefs graded doxastic logic
Subject of persuasion | parties of contention multimodal logic
Tools of persuasion arguments logic of action

Table 1. The nature of persuasion and its formal description

To adequately describe distinguished characteristicerfyasion, we choose specific formal methods
(see Table 1). Firstly, in order to represent degrees oétselive usagraded doxastic systeninspired

by Logic of Graded Modalities of Wiebe van der Hoek and JoHasIMeyer [15, 18]. Their formalism

is useful for those applications in which agents have toaeand work on the basis of data laden with
exceptions (that is, when it is necessary to act despiteind usmreliable sources of information). It helps
us to capture various grades of belief-attitudes of the tagarconflict. However, we modify their logic
to make it more appropriate for our needs. We change thestarpic approach into the doxastic one,
since persuasion refers to beliefs not knowledge. Furtbernwe introduce additional belief-operator
which allows to express the degrees of agent’s uncertaingynnore direct way.

Secondly, since individuals play different roles in a cantf{pf proponent, opponent and audience),
we use methods ahultimodal logic [18]. Thus, there are so many operators of a given type as many
individuals in a society. For a systemwfndividuals, an agent with the numbifwherei € {1,...,n})
has assigned the belief-operator with the numbedn the semantic level, the model is extendediby
doxastic accessibility relations - one for each agent.

Finally, we interpret arguments in thegic of actionswhich is inspired by elements of Algorithmic
Logic [19] and Dynamic Logic [14]. Yet we modify their notati so that we can indicate who is a
performer of an action (who is a proponent of persuasion)rddeer, we are able to express who is an
addressee of argument (who is an audience) by pointing oasevbeliefs are about to change under
the influence of arguments. On the semantic level, we urataigbersuasion as an action which adds
or eliminates transitions in an audience’s doxastic ado#is relation (changing thereby audience’s
opinions about the reality). Such a representation enalse® research the issue of how arguments
influence persuaded agent’s beliefs.
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1.3. Related work

This is not the first paper to consider the change of agengaitioe attitudes. We give a brief overview
of the related works hereDynamic epistemic logicnodels change of agent’s knowledge combining
epistemic modal logic with dynamic modal logic (see e.g.,[202, 9])2 Dynamic doxastic logic
describes change of beliefs by means of doxastic modal Bogicdynamic modal logic (e.g. [25, 16]).
In the belief revisionformalism, a set of agent’s beliefs is changed due to expansiontraction or
revision in light of new (possibly conflicting) evidencede[1, 13, 24]). BDI-logics are combinations
of logics on the BDI-approach including, but not limited foistemic, doxastic or dynamic ones (e.g.
[8,27])3

Despite relatively much work on providing logic for reasmgiabout change of agent’s cognitive
attitudes, there are some fundamental differences betthese approaches and ours. Tomtribution
of the presented paper is that we do not focus on the changeliefda(knowledge), but on thehange
of the degreesof beliefs represented in the manner of the Logic of GradediaMties. The second
difference arises from the fact that the issue of convinaireg not the main interest in these other
formalisms? We want our logic not to be applied to reason about changegpfitiee attitudes but rather
to reason about persuasion Indeed, we show that the logic of actions and graded bakedshighly
expressive and useful tool for studying the persuasionga®andertaken by agents.

2. The SystemAg,,

In this paragraph we show a deductive system which we usééopersuasion theory. It is the Multi-
modal Logic of Actions and Graded BeliefdG,,). The logic we consider is an extension of a proposi-
tional language in which there are propositional varighpgsgram variables, and apart from the usual
propositional connectives there is one program connectidereover, we add some modalities for ex-
pressing properties concerning beliefs as well as actibtm&rder to model degrees of beliefs we use
Logic of Graded Modalities (LGM) [15, 18] while the part camning arguments is inspired by logics
of programs like Algorithmic Logic (AL) [19] and Dynamic Log(DL) [14]. We do not use the whole
apparatus offered by DL or AL which are much more rich forzetions than the one we explore. For
our reasons it is sufficient to use only basic elements ofthasics.

2.1. Syntax and semantics

Let V, denote an at most enumerable sepipositional variablegalso calledoroposition3 p, 7, s, . ..
andII; an at most enumerable setmbgram variableqalso calledatomic actionyaq, as, . ... Propo-
sitional variables represent atomic assertions such &s: tdmperature equals 10 degrees”, “the ther-

2The proposals of dynamic epistemic logic were inspired leyphblic announcement logic of Plaza [22] (with the excaptio
of the Moore’s proposal [20]). The Plaza’s logic became riediby generalizing dynamic operators for truthful public
announcement to more complex epistemic actions.

30bserve that BDI-approach concentrates rather on repiegeseliefs, desires and intentions than change of cognitates
of agents.

“The process of convincing was considered in BDI framewoil8jnHowever, even though F. Dignum, B. Dunin-Keplicz and
R. Verbrugge talk about actions and beliefs in the contextesuasion, it is still other approach than we have in minte T
key difference is that they understand actions as specifiectpacts performed during agents’ dialogue, while we wetitress

to be executed arguments.



K. Budzynska and M. Kacprzak / A Logic for Reasoning abougResion 5

mometer is wrongly placed” etc. which can be either true twefaFurther, program variables represent
things happening. In our formalism, they express givingiargnts - both verbal (like uttering words e.g.
saying “you should move the thermometer”) and nonverbk {fhoving the thermometer).

In addition, we assume the boolean connectivestnegation, “not”), A (conjunction, “and”),Vv
(disjunction, “or”), — (implication, “if ... then ...”),< (equivalence, “if and only if", “iff") and one pro-
gram connective; which is a sequential composition operator. By means ofesgtipl compositions we
composeschemes of programshich are defined as finite sequences of atoatiions ai;as;...;ax.
Intuitively, the progranus; as for a, as € Iy means “Daaq, then doas”.

The set of well-formed schemes of prograbhss defined as follows:

e g € Il foranya € I,
o if P, Py ecll, thenPl;Pg e II.

There are considered many program connectives in logicegfams, e.g. nondeterministic choices
or iteration operations. However, sequential compositiare sufficient for our needs.

The last components of the language are modalities. We udalitya)/ for reasoning about beliefs
shared by agents in persuasion and modalifieand O for reasoning about actions (arguments) they
perform. The intended interpretation df¢« is that there arenore thand states which are considered
by an agent and verify «. Whereas, formulas>(i : P)a andO(: : P)a say that after execution
of a programP by an agent a conditiona may or must be true, respectively. This means that if
P = (ay;...;ax) foray,...,a; € Iy and the formula®(i : P)« is valid thenit is possiblethat after
giving argumentsuy; . . . ; ax, the thesisy holds. On the contrary, if the formula(i : P)« is valid then
alwaysafter giving argumentasy ;... ; ay, the thesisy holds.

Now, we can define the sét of all well-formed expressions 0dG,,. A grammar of the language is
written in Backus-Nauer Form (BNF) as follows:

o = plmala V a|MEalO(i : P)a,

wherep is a propositional variable] is a natural numberP is a program schemé,is a hame of an
agent. For simplicity, for names of agents we apply natusahlpers, so we assume that {1,...,n}
for some naturah.

Other boolean connectives are defined fremand V in the standard way. The necessity operator
O is the modal dual of the possibility operatorand is defined asl(i : P)a < =< (i @ P)-a. We
useBla as an abbreviation for M- - at mostd states considered hyrefutea. We use alsa/!%a
whereM!9a < BY—a, M'%a < MP a A —~Mfa, if d > 0. From the definition above, it is clear that
M !‘j means “exactlyl”. The most important formula that we shall use in reasoningué a persuasion
process isM !f“d%z which is an abbreviation foM!{* o A M2 true. It should be read as ‘believes
a with a degreefj—;". Thereby, by adegree of beliefsof agents we mean the ratio @f to do, i.e. the
ratio of the number of states which are considered by an agamd verify « to the number of all states
which are considered by this agent. Itis easy to observeé)tlga% < 1. Intuitively, if an agent believes
a thesiso with a degree 1 then he is absolutely sure théilds while if he believes: with a degree 0
then he is absolutely certainis false.

The semantics of the language is based on the notiomalo&tionandinterpretation A valuation
is a function which assigns a logical value “false” (denobgd0) or “true” (denoted byl) to every
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propositional variable. An interpretation assigns to gyanmogram variable and every agent a binary
relation in a non-empty set of stat8s Every state will be understood to be an abstraction of aredac
situation on which the behaviour of the program and the vafaay formula depends. Every state carries
information about the valuations of propositional varesblFurthermore, we consider a doxastic function
which assign to every agent a binary relation which will giverpretation of the believe operator.

Definition 2.1. Let Agt = {1,2,...,n} be a finite set of names of agents. By a semamitidel we
mean a Kripke structura1t = (S, RB, I, v) where

e S is a non-empty set of states (the universe of the structure),

e RBis a doxastic functionRB : Agt — 25*9, where for evenyi € Agt, the relationRB (i) is
serial, transitive and Euclidean,

e I is an interpretation of the program variablds; I, — (Agt — 25*%), where for every
a € IIy andi € Agt, the relation (a)(i) is serial, and/ (Id)(i) = {(s,s) : s € S}, whereld is a
program constant which means identity,

e v is a function which assigns to every state a valuation of @sijpnal variables
v: S — {0,1}"0 and for everys € S, v(s)(true) = 1, wheretrue is a propositional con-
stant.

Notice that we assume that for everg Agt the relationR B (i) is serial, transitive and Euclidean.
Furthermore, we do not require this relation to be refleximeeswe want the operatdd to model beliefs
rather than knowledge of individuals. In standard epistdogic, it is assumed that an individual cannot
know facts that are not true, so reflexivity is desirable.

Function can be extended in a simple way to define interpretation ofpmogram scheme. Let
Iy : 1T — (Agt — 29%9) be a function defined by mutual induction on the structur@of 11 as
follows:

e I11(a)(i) = I(a)(7) for a € IIp andi € Agt,

o In(Pr; P) (i) = In(P1) (i) o In(P2)(i) = {(s,s") € S x S : Jgneg ((s,8") € In(P1)(i) and
(s",s") € In(P2)(i))} for P, P, € Il andi € Agt.

In other words(s, s’) € I (P)(i) for P = (aq;...;a;) andi € Agt iff there exists a sequence of
statessy, . .., s; such that(s;_1,s;) € I(a;)(¢) for j = 1,... k. Intuitively, it means that the staté
can be achieved from the statéf the agent performs actions, .. ., a in order they appear.

Now, we are ready to defirmemanticsof formulas ofAG,,.

Definition 2.2. For a given structuréM = (S, RB, I,v) and a given state € S the boolean value of
the formulax is denoted byM, s = a and is defined inductively as follows:

M,;sEp iff  wv(s)(p) =1, for peVp,

M, s E -« iff  M,s =«

M;sEaVp iff M,skEaor M,s S,

M, s = Mla iff |{s'€S:(s,¢)€ RB(i)andM,s' Ea}|>d, deN,

M,;s =036 P)a  iff  Fues ((s,8) € m(P)(i) and M, s E «).
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We say that is true in a modelM at a states if M, s = «. Formulaa is truein M (M E «) if
M, s E aforall s € S, anda is calledvalid (= «) if M = « for all M.
2.2. Axiomatization

In this subsection we characterize the semantic consequgeeation described above in syntactic terms
and thereby we give a formal deductive system for deducingeaties of persuasion process expressible
in the language afdgG.,.

Definition 2.3. The systemAG,, is defined as follows. It has three inference rules:

, a—f3
R 2= R2 5 R3 7y

It has also the following axioms:

A0 classical propositional tautologies

Al Mo — Mla

A2 BY(a— B) — (Mfa — MIB)

A3 MVO(aAB) — (M%PanMI®2E) — MI$T (v B)
A4 Mfa — BYMfa

A5 MPMfa — Mfa

A6 M?(true)

A7 0@ : P)(a— 8) — (A(i : P)a— O(i : P)B3)

A8 O(i: P)(aNpB)« (O@ : P)aAO(i: P)S)

A9 O(i: P; Po)a < O(i: P)(0(i : Py)av)

A10 O(i: P)a — (i : P)a
All O(i : P)

Al12 O3 : Id)a < «

true

In all the above schemes of axioms, the symhB|$’ , P, denote schemes of program&d;, ds are
natural numbersy, G are arbitrary formulas andis a name of an agent,ec Agt.

The rulesR1 (Modus PonensiR2 (Necessitation for graded beliefs) and axiofAsA4 are equiva-
lents of rules and axioms of Logic of Graded Modalities (LGM)ich was introduced in papers by M.
Fattorosi-Barnaba, F. de Caro, and C. Cerrato [7, 11, 12fer|as epistemic interpretation was given
by W. van der Hoek and J.-J. Ch. Meyer [15]. The main diffeesngetween our approach and the one
proposed by those authors are: first, we have a logic for mgegta (not only one as they assume) and
second, we explore a doxastic model rather than the epistamei (as in Hoek-Meyer version). Thereby
we assume that doxastic accessibility relations are seéaaksitive, and Euclidean instead of equivalence
relations. As a consequence the axiomatic system is a hitgelsdawhen compared to the original one
of Fattorosi-Barnaba, de Caro and Cerrato as well as whepaa@u to the epistemic version of Hoek-
Meyer. More specifically, we use the logic of de Caro as a asisyntactic formulation of the axioms
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and the logic of Hoek-Meyer as a basis for our semantics. Meryatill their proposals are modified
since we intend to capture the attributes of beliefs insté&thowledge (or in terms of axiomatic system
- we are interested in the we&,, system not in the's,, one). AxiomsAl, A2, A3 correspond to the
axiom K of commonly used (non-graded},, or weaks'5,, modal system. For more details see [7]. In
the paper of de Caro and the one of van der Hoek and Meyersghfarmulas that create their axiom
systems (especially axio3) are different but it is easy to verify that both systems ap@ealent. Ax-
iomsA4, A5 andA6 correspond to the axioms 5, 4, and D in wegik; system, respectively. They hold
in models for which accessibility relation is Euclideamnsitive and serial, respectively.

The rule R3 (Necessitation for programs) and axiom3-Al2 find their motivation in the same
fashion as the corresponding rules and axioms in Algorithinoigic (AL) (cf. [19]) and Dynamic Logic
(DL) (cf. [14]). However, in AL and DL it is not considered whse a performer of a given program.
Therefore, axioms aflG,, are similar but not exactly the same. As we noted, in AL and Idret are far
more program constructions which we do not need in this aubro

We write AG,, - « if the formulac« is provable in the deductive system. Moreover, we say that a
formula« is consistenif AG,, I/ -, thatis, if it is not the case thatG,, - —a. Afinite set{¢1,..., ¢x}
of formulas is calleadtonsistentf its conjunctiong; A - - - A ¢, is consistent. An infinite set of formulas is
calledconsistentf every finite subset is consistent. Formulas and sets aiddas are callethconsistent
if they are not consistent. A sé&tof formulas ismaximally consisterif I" is consistent and U {¢'} is
inconsistent for any formule ¢ T.

3. Soundness and completeness

In this section we show that the deductive systdf, is sound and complete, i.e. that all theorems are
valid formulas and all valid formulas are theorems. To prthie fact, we use the well known technigue
of the canonical models by Lemmon and Scott for classicalahlogics. More precisely, we apply the
Henkin’s method. That is, we define a satisfying model for amaximally consistent set of formulds
such that its frame is a frame for.

The proof is based on the completeness results for normalslagith graded modalities (NLGM-
s) (see [7, 12, 11]), epistemic logics (see [10]) and dyndouics (see [14]). Some definitions and
theorems of this section are quoted from the above works. adenvthey are modified for the needs of
this paper.

Theorem 3.1. (soundness)
AG,, is sound with respect ta1.

Using the standard manner, it is easy to show thasatisfies the axioms of the syste#d;,, and the
rules of the systemiG,,. The rules hold in the sense that, if their premises are Mlh the consequents
are valid as well (c.f. [11, 15, 18, 14]). An inductive proaf the length of derivations then yields that
every provable formula is true. Below we justify that theer®2 preserves validity and the axioms
A1-A6 are valid formulas. The proof for the ruR3 and the axiom#7-A12 is analogous.

R2 Assume that for any modeW1 and any state of this modelM, s = « holds and there exist a
model M’ and a state’ of this model such thatt’, s’ = BY«. Then (by definition of the operatds),
M s = MP—aq, i.e. (by the definition of relatiog=) there exists a staté’ such that(s’, s”) € RB(i)
and M’ s” = —«, what contradicts the initial assumption.
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Al Let M be a model and be a state of this model. Assume th&d,s = M;”la. Then,
H{s" € S : (s,s') € RB(i) andM,s’ = a}| > d+ 1. Hence,|{s’ € S : (s,s') € RB(i) and
M,s' = a}| >d, ie. M, s = Mia.

A2 Let M be a model and be a state of this model. Assume thet,s &= BY(a — 3). Then,
s € S : (s,s') € RB(i) and M, s’ = —(a — (3)}| = 0. Therefore, for any state, if (s,s’) €
RB(i) and M, s' = a, thenM, s’ = 3. Next, assume thatt, s = MZa, i.e., there are more thah
statess’ such that(s,s’) € RB(i) and M, s’ |= «. Thereby, there are more tharstatess’ such that
(s,s') € RB(i) and M, s' = 3. Hence,|{s' € S : (s,s') € RB(i) and M,s" |= B} > d, i.e.
M, s = M2g.

A3 Let M be a model and be a state of this model. Assume thiet, s = M!9(a A 3), i.e. there
are no states’ such that(s,s') € RB(i) andM, s’ = a A 3. Next assume thatt, s = M!% « and
M, s = M!f%. Thus, there are exactlyj states which are in relatioR B (i) with the states and satisfy
a and there are exacthy, states which are in relatioRB(7) with the states and satisfy3. Moreover,
there are no states in relatidtB (i) with the states, in which botha: andg are true. Therefore there are
exactlyd, + d, statess’ such that(s, s') € RB(i) andM, s’ = a V §,i.e, M, s = M!DT%(a v B).

A4 Let M be a model and be a state of this model. Assume thiet, s = M¢a, i.e. there are more
thend states such thds, s’) € RB(i) and M, s’ = «. Let sy be such a state. SindeB(i) is Euclidean
so is in relation RB(i) with more thand statess” such thatM, s” = a. Therefore,M, sy = Mfa.
Thus, for any state’ such that(s,s’) € RB(i) and M, s’ & « it holds thatM, s’ = Mfa, i.e.,
M, s = B)Mia.

A5 Let M be a model and be a state of this model. Assume thet, s = M?Mida. Then,
|{s' € S : (s,s') € RB(i) and M, s’ = Mfa}| > 0. Hence, there exists at least one stétsuch that
there are more thadi statess” such that(s’, s”) € RB(i) and M, s” = «a. Since the relatioRB(7)
is transitive there are more thahstatess” such that(s,s”) € RB(i) and M, s” = «a. Therefore,
M, s = Mia.

A6 Let M be a model and be a state of this model. Since the relatifB (i) is serial there
exists at least one staté such that(s,s’) € RB(i). Thus, there exists at least one statsuch that
(s,8') € RB(i) and M, s’ = true, i.e.,M, s = M?(true).

Theorem 3.2. (completeness)
AG,, is complete with respect t81.

To prove this theorem we have to show that, forcake F, if = «, thenAG,, F « or equivalently,
if AG, t/ a, thenl~: «, i.e. if AG, I/ a, then there exists a modaHi and a state of this model such
that M, s = —a. Thus, (by replacingx by —«) if AG, t/ —a, then there exists a modal and a
states of this model such that, s = a. Thus, proving completeness is equivalent to showing that
every consistent formula is satisfiable. In order to provg fhis sufficient to show that every consistent
set of formulas is satisfiable. Since every consistent sébrafiulas can be extended to a maximally
consistent set, it is sufficient to show that every maximeatipsistent set of formulas is satisfiable. This
is established by means of the constructiorarionicalKripke structureMe¢.

Let @ be the set of all the maximally consistent sets.

Definition 3.1. The functionm,; : ® x & — w+ 1 = w U {w}, fori € Agt is defined as follows: for
everyl', " ¢ ®
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e m;(T, 1) = wifforany a € T, Mfa € T for anyd € N,
e m;(I,T") = h =min{d € N : M'%a € T anda € T’} otherwise.

Definition 3.2. LetI'y € ®. The set
SF(To) = [ J{{T'} x ms(To,T) : T € &}
for i € Agt, will be called the satisfying family aff.

An element ofSF;(T'y) is of the form(I", d) whered < m;(I'y,I"). Therefore we shall think of
SF;(Ty) as it is made up byn;(T'y, ") ordered copies df, for anyT" € ®.

Theorem 3.3. For anya € F', i € Agt, andd € N,
Mla €Ty iff |{T € SE(Iy):acT} >d
where, to simplify notations, we identify a coug[g, d) (d < m(T'y,T")) with its first component.

For the proof see [7].
Let
m(T) = sup{m;(T",T) : T € ® and i € Agt}

for anyT" € .
The canonical Kripke model we define as

M€ = (S8°, RB¢, I¢,v°)
with

e S =J{{T} xm(T): T € @} U ¥, where¥ = {(I',w) : T' € ® andm(T") = 0}. We may think
of S¢ as made up byn(I') ordered copies df, if m(I") # 0, and by one copy df, if m(I") = 0,
foranyI’ € ®. We shall identify(T", d) (d < w) with sr.

e RB¢: Agt — 2°*%is a function such thaRB¢(i) = {(sr,sr) € S x S : sp € SF(I)},

o I¢ : Ilj — (Agt — 29%5) is a function such thaf®(a)(i) = {(sr,sr) : Veer (if
0@ :a)a €T, then a €I},

e v°: S — {0,1}" is a function such thai®(sr)(p) = 1iff p € T.

First, we prove by induction on the complexity of programestle P that If; : II — (Agt —
29%9) is a function such thatf (P)(i) = {(sr,sr/) : Vaer (if O(i : P)a €T, then a € I')}. If
P = a € Tly, then the thesis follows from the definition of the canonioaldel. Suppose th& = P;; P,
and(5p,3p/) € Iﬁ(P)(Z)

(=) Let sp, sy be states such th@gr, spv) € If(Pr; P2)(i). Then, there exists a statg, such
that (sp, spv) € If(P1) (i) and (spr, spv) € If;(P2)(i). Suppose thabl(i : Pp; P2)a € I'. Then, by
axiom A9 and maximal consistency of O(: : P;)0(i : P»)a € T'. Now, by inductive hypothesis,
O : Py)a € I" anda € TV,

(<) Claim. LetI" be a maximally consistent set of formulas. Then, there &xishaximally consis-
tent sefl” such thatx € I for any formulaa such thatd(i : P)a € T.
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Proof of the Claim. Lel'(P)(i) = {a : O(i : P)a € I'}. Observe thal'(P)(:) is a non-empty set
since, by axiom All{rue € T'(P)(i). We shall prove thal'(P)(:) is a consistent set.

Supposd’(P)(7) is inconsistent. Then there exists a finite §¢t, ..., ¢r} C T'(P)(¢) such that
AG, E =(p1 A+ A gg). Now, by R3,4G,, - O(i : P)(=(¢p1 A -+ A ¢y)) and, by A10,4G,, - O(i -
P)(=(¢1 A --- A ¢r)), i.e. by the definition of operatar, AG,, - —0(i : P)(¢1 A -+ A ¢x). Thus, by
A8, AG, - ~(O(i: P)p1 A--- ANO(i : P)¢y). As a consequence, the §€i(i : P)¢; : j =1,...,k}
is inconsistent. This contradicts the assumption fhat; : P)¢; : j = 1,...,k} € I"andT' is a
maximally consistent set. Therefol&,P)(i) is consistent.

Since any consistent set can be extended to a maximallystensiset there exists a maximally
consistent set”’ such thaf(P) (i) C I, what ends the proof of the Claim.

Let I, TV be maximally consistent sets. Assume tha@l{f : P; P>)a € T, thena € T” for any
a € F. Then, by axiom A9 and maximal consistencylof O(: : P)d(i : Py)a € I'. Now, by
the Claim, there exists a maximally consistent Bétsuch thatd(i : P)a € I and, by inductive
hypothesis(sr, spv) € If(P1)(i) and(spr, spv) € If(P)(3). Thus,(st, spv) € If(Pr; ) (7).

Lemma 3.1. For any maximally consistett, it holds that for anyy, M€, st = «iff « € T.

Proof The proof by induction on the structure of
Case 1 a = p € V. Directly from the definition ob°.
Case2a =1V Bs.

ME sp |= 1V By iff M€ st = By or M€, st | (s iff (by the inductive hypothesisp;, € T or
(3o € T iff (by maximal consistency of) 8; Vv G, € T'.

Case 3a = (.

Me, s | g iff M€, sp £ Giff (by the inductive hypothesisy ¢ T iff (by maximal consistency
of ') =g eT.

Cased4a=0(i: P)S.
(<) Supposed(i : P)3 € I. Then, by definition of[5, if (sr,s;.) € If(P)(i), theng € I,
Thus using the inductive hypothesi&{¢, sy |=  for all IV such that(sr, spr) € I (P)(i), i.e.
M, sp ): 0O : P)ﬂ
(=) For the other direction, assumiel®, sp = O(i : P)j. Itis easy to show that the séb :
O(i : P)¢ € I'} U{—~p} is inconsistent. From this it follows that there must be sdimiee subset,
say{¢1, ..., ¢r, 70}, which is inconsistent. Thus, by propositional reasonnghave

AGn b1 — (o2 — (- = (o — B)...)).
By R3, we have
AGn = 0(i - P)(¢r — (¢2 = (- = (¢ — B)--.)))-
By induction onk, together with axiom A7 and propositional reasoning, we staow
AGn E0(i: P)(¢1 — (92 = (- = (o, = B8)...)))
— (O : P)¢1 — (B(i: P)pp — (--- = (B(i: P)gp — B(i: P)f)...))).
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Now from R1, we get
AGy FO(i : P)g1 — (O(i : P)gy — (-~ — (O(i : P)gy — O(i: P)B)... ).
Hence (sincd’ contains all theorems)
O(i : P)g — (D(i: P)gz — (- — (O(i : P)¢ — O(i: P)B)...)) € T.

Becausep;, ..., ¢ € {¢ : O(i : P)¢ € I'}, we must haved(i : P)¢y,...,0( : P)gy € T.
Now, from the maximal consistency bf it follows thatO(i : P)3 € T.

Case 5a = M{3.

Me, sr = M2g iff (by the inductive hypothesis){sr : (sr,srv) € RB(i) andg € I'}| > d
iff (by the definition of the canonical structur§)sy : spr € SF;(T') and S € I} > diff (by
Theorem 3.3/¢3 € T.

Notice that, Lemma 3.1 impliea1¢, sp = T, for any maximally consistent sét Thereby, we
showed that every consistent $eis satisfiable what ends the completeness proof.

4. Examples of expressiveness

Our research aim is to reason about a persuasion processnpedf in a multi-agent system. To this
end we need to employ a formal language in which it is possiblkeharacterize main attributes of this
process. In this section we show th4g,, logic is expressible enough to accomplish this task. Among
the important features of argumentation are: existenceaandlict of opinion, success of persuasion,
power of arguments as well as an influence of a proponentliligdon the effect of an argumentation.

Consider two agents which are committed to make an attenygause the rise of the environment’s
temperature as soon as it falls undé?C. Assume that one agent is not able to carry out the task on his
own. It is possible only if agents cooperate.

Example 1 (Conflict of opinion) The condition for persuasion to start is a conflict of opinidn
our scenario a conflict appears when one of the agents belieaethe temperature is lower thadf C
while the other does not - possibly because agents usedtiffasources of information and thereby
derive different conclusions. Indeed, as long as agents tie/same opinion, there is no use to start the
persuasion. Only a conflict might make one of agents try twioce the other to his ideas. Recall that
an agent which gives a thesis and defends it is a proponei¢ @whiagent to which the persuasion is
addressed is an audienténterestingly, a conflict appears not only when a proponeabsolutely sure
about the thesis and an audience is absolutely againstcianltlso arise from the fact that the degrees
of agents’ beliefs differ or belong to different intervalghere by a degree we understand the ratio of the
number of states which the agent considers and at which & tisetsue to the number of all states he
considers as his doxastic alternatives. Say that degrtams(y, 1] mean accepting the thesis and degrees
from [0, %] mean rejecting the thesis. Then, the conflict of opinion carmdptured in the language of
AG,, in the following way:

M1, (Pr<io) A M1 (pi<io)

5In our example, the second agent disagrees and is persutittesl same time. This means that he plays both the role of
opponent and audience. However, for the clarity of the exesnpe will call him just “the audience”.
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whereprop and aud mean the proponent and the audience, respectivelypand is a propositional
variable which expresses that the temperature is lowerltbfé®. This formula should be read as follows:
“The proponent believes that the temperature is lower &€ with the degreej; and the audience
believes the temperature is lower thed C with the degre%".

Example 2 (Success of persuasiofhe persuasio® = (aj;as;...;a) can be successful when
after performing arguments, ao, . . ., ax by the proponent, it is possible that the audience will lvelie
the thesis with some expected degree. Recall that in ouasoean agent accepts the thesis if he believes
it in a degree higher tha%m Then, thesucceswill be achieved when:

O(prop : P)(M32 (pi<1o)).

This formula states “If the proponent performs argumedntthen it is possible that the audience will
believe the thesis with the degréé

Interestingly, success can be atdbjective That is, after execution a? the proponent may believe
that he achieved a goal while he did not. This means that hiy fewaluated the results of his persuasion:

O(prop : P)[MIE (M2 (prc1o)) A =M (preio)].

The formula states “If the proponent performs argumdnthen it is possible he will believe that the
audience is convinced with the degr%,ebut the audience will not believe the thesis with this delyre

The other important issue is whether the proponent beligmeslicty that he is able to succeed.
Otherwise, he may not start convincing even though he hattaltssary means to prevail in the desired
degree. Such a situation can be expressed by the formula:

Mlg?tp[o(pmp : P)(M!ifd(pt<10))] A O(prop : P)(M!ifd(pt<10))-

Here the proponent is absolutely sure that his persuaBiwill fail (the proponent believes with the
degreeg that the audience may become convinced to the thesis wituetgme%), but in factP would
lead him to success (after persuasi@ihe audience will believe the thesis with the desired deéyee

Example 3 (Power of arguments)The persuasiveness may depend on the quality of arguments.
Assuming the same proponent and the same audience butdiffelguments, we can obtain results of
unlike strength. Say that if in the scenario the proponerggverbal argument “One of your thermome-
ters is placed wrongly since it is too close to a heater” ¢acti), then he will prevail. However, his
success will not be absolute:

M!(llfd(l?tao) — O(prop : a)(Mlzfd(PKlo))-

We read this formula as follows “If the audience believesttiasis with the degre§ then always after
the execution of the actiom by the proponent, the audience will believe the thesis vbimdegreé4”.

When in the same situation the proponent moves the therneorteeanother place (actios) and
thus proves that the temperature is lower thef'C, he may obtain audience’s utter conviction:

4
M!i’fd(Ptdo) — O(prop - b)(M!afd(PKlo))-

Example 4 (Power of proponent’s credibility) Another important factor which affects the persua-
siveness is a proponent, precisely - who he is. Assume tbhatuldience finds a proponent (call him
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propy) unreliable. As a consequence, he trusts nothing what tigopent says or acts and therefore
none of his arguments will convince him. On the other handnifther proponent (call hiprops) is

a leader of a group of agents or is a specialist, then his argtgrhave great persuasive power. Simply
stated, the same arguments can cause different resultsdiegpen an agent who performs them:

= (propy - P)(M!ifd(mdo)) A O (props : P)(M!ifd(pt<1o)).

5. Conclusions

In the article, we introduce thdeductive systemAgG,,, i.e., we define its syntax and semantics as well as
provide an elegant axiomatization for the resulting lamgguaNe also show theoundnesandcomplete-
nesstheorems for the logic. Having the outcome of completenesscan applyAg,, for specification
and verification of properties of multi-agent systems inchfdgents perform the process of convincing.
In particular, the complete logic allows us to employ itaxiomaticverification. This means that our
logic provides a formal proof of correctness of distribusgdtems and creates the possibility of finding
faults. Moreover, we show hoexpressiblethe language of our logic is with respect to the persuasion
process. With the help odlG,,, we can reason about the effects which convincing bringsitatio what
degree the persuasion changes audience’s beliefs, whatstaguld an agent undertake to influence other
agent's opinion, whether the persuasion was successfwl strong the victory is, whether the success
is real or only subjective, what agent has sufficient peigagmwer to convince a given audience, etc.
On the basis 0fAG,, logic we plan to develop a software syst@mestigating a persuasion process. The
aim of this system will be to study multi-agent systems inahhigents can argue and perform actions
to influence each others beliefs.
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